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EFFECTS OF STATE RECOVERY ON CREEP BUCKLING UNDER VARIABLE LOADING
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Structural alloys embody internal mechanisms that allow recovery of state
with varying stress and elevated temperature; that is, they can return to a

softer state following periods of hardening. Such material behavior is known

to strongly influence structural response under some important thermomechani-
cal loadings; for example, those involving thermal ratcheting. Here, we inves-
tigate the influence of dynamic and thermal recovery on the creep buckling of

a column under variable loading. The column is taken as the idealized (Shan-
ley) sandwich column. The constitutive model, unlike the commonly employed
North creep model, incorporates a representation of both dynamic and thermal
(state) recovery. The material parameters of the constitutive model! are chosen
to characterize Narloy-Z, a representative copper alloy used in thrust nozzle
liners of reusable rocket engines. Variable loading histories include rapid
cyclic unloading/reloading sequences and intermittent reductions of load for
extended periods of time; these are superimposed on a constant load. The cal-
culated results show that state recovery significantly affects creep buckling
under variable loading. Failure to account for state recovery in the constitu-
tive relations can lead to nonconservative predictions of the critical creep-
buckling time.

INTRODUCTION

The influence of dynamic and thermal recovery on the high temperature
behavior of structural alloys is well recognized (refs. 1 and 2). (See figs. 1
and 2.) For example, recovery is believed to play a major role in one of the
central structural problems relating to 1iquid metal breeder reactor design,
the problem of thermal ratcheting. Failure to account for recovery effects in
structural analyses involving repeated thermal transients has been shown to
give qualitatively incorrect and nonconservative predictions of ratcheting in
some instances (ref. 3). Special provisions for taking recovery into account
(e.g., the so called a-reset procedure (ref.4)) are now finding their way
into documents guiding structural analysis in the U.S. nuclear industry. The
effects of thermal ratcheting have also been observed in thrust nozzle liners
of reusable rocket engines.

A second area in which recovery effects are thought to play a primary
role, and one that impacts essentially all high temperature system design, is
that of creep crack growth under creep-fatigue (variable stress) conditions.
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Creep (state) recovery is believed to be one of the main causes of acceleration
of crack growth in the creep regime and under variable loads. A study by Kubo
(ref. 5), using the same constitutive relations (refs. 2 and 6) employed in

the present work, shows that the experimentally observed acceleration of creep
cracks under variable stress can be predicted through the inclusion of appro-
priate mechanisms of recovery in the constitutive relations.

In this paper we discuss a third area of mechanics in which recovery is
expected to have significant influence, that is the problem of creep buckling
under variable loading. The presence of mechanisms of recovery can allow creep
strain rates to increase following periods of hardening and thus cause acceler-
ation of creep buckling. Load reversals may be accompanied by dynamic recovery
as in figure 1, and load reductions by thermal recovery as in figure 2; in
either case, creep rates are increased upon reloading, which tends to reduce
the critical time to buckling.

In the vast majority of creep-buckling studies the constitutive model used
has been of the Norton type (refs. 7 to 9) wherein the (steady state) creep
rate is taken as a function of stress and temperature alone. Some investiga-
tions have made use of hardening theories (refs. 10 to 12) that include a pri-
mary creep phase. However, these theories do not generally allow for inelastic
state recovery and, consequently, for rejuvenation of primary creep. These
constitutive theories are adequate in the case of constant loading but may sig-
nificantly over predict the time to buckling under certain types of variable
loading.

Here, we examine the elevated temperature creep-buckling problem under
variable loading using the simple Shanley model (ref. 13) of a column but with
a constitutive model (refs. 2 and 6) that embodies a representation of both
dynamic and thermal recovery. The constitutive model is that developed princi-
pally by Robinson at Oak Ridge National Laboratory and NASA Lewis Research Cen-
ter; and that used by Kubo in studies concerning creep crack growth.

The present study was motivated partly by the occurence of what appears
to be local ratcheting-buckling failures in the throat liner of the main thrust
nozzles of reusable rocket engines, notably the NASA Space Shuttle main engine.
For that reason the material parameters used in the constitutive equations are
chosen to represent a copper alloy, Narloy-Z, which is typical of materials
used in rocket engine thrust nozzle liners.

We shall first state the constitutive model and, secondly, specify the
geometry of the Shanley column model. MWe then investigate creep-buckling
behavior under constant loading; cyclic loading which includes relatively rapid
load reductions and reversals (dynamic recovery); and cyclic loading which
includes intermittent reductions of load for extended periods of time (thermal
recovery). Some of the calculations, using a roughly equivalent Norton type
creep model, are repeated for comparison. Some physical aspects associated
with the constitutive model are discussed along with the results. Finally, we
state the conclusions drawn from the study.

THE CONSTITUTIVE THEORY

We make use of the constitutive law reported in references 2 and 6, which
gives the complete multiaxial statement of the model. Here, we state the model
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in uniaxial terms together with the corresponding parameter values appropriate
for the copper alloy Narloy-Z.

Flow law:

AFMsgn(o-a); F > 0 and o(o-a) > O
0 y F<Oor F>0 and o(o-a) <O

Evolutionary law:
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and
A = 1.60x10-8
n =4
m = 8.73
B = 1.07x10-6 (T2) + 1.60
k2 = 209.6 - 0.20(T) (4)
H = 1.46x107
R = 1.06x10-7
ay = 0.2

Also, eP indicates the inelastic strain rate in hr-! and o, the applied
uniaxial stress in MPa. In the general form of the theory, x (MPa) is a
Bingham-Prager threshold stress playing the role of a scalar state variable;
here it is taken to have the constant value given above. For present purposes,
a (MPa) is the single inelastic state variable. It represents the uniaxial
component of a tensorial state variable (internal stress) that appears in the
multiaxial formulation of the theory. The minimum attainable value of |a| s
apg which plays a primary role in the representation of dynamic recovery. (See
Discussion.) The remaining parameters, in some cases functions of temperature
(T), are consistent with the units MPa, hr, and degrees Kelvin. The elastic
response is characterized by a linearly temperature dependent Young's modulus
E (MPa) given by

E = 1.47x10% - 70.5(T) (5)
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Equations (1) to (4) incorporate both dynamic and thermal recovery and there-
fore are capable of predicting the type of behavior illustrated in figures 1
and 2.

The parameter values for Narloy-Z were determined from uniaxial tensile
and stress relaxation test data. Because the complete data base normally
required to characterize a particular alloy by using the present constitutive
theory was not available, the tensile and relaxation data had to be considered
sufficient.

Tensile data were found (ref. 14) over a wide temperature range (~30 to
811 K) but at only a single strain rate 0.002/sec. Limited stress relaxation
data (ref. 15) were found at the temperature 811 K (1000 °F); these were used
in the absence of creep data. The most serious data deficiency in the present
context is the lack of tests giving a direct measurement of recovery effects;
that is such tests as strain or stress transient dip tests or open loop cyclic
tests involving partial stress reversals. Nevertheless, it is believed that
the material characterization is adequate for a reasonably quantitative study
of creep-buckling behavior under variable stress.

Figure 3 shows a comparison of the tensile data with predictions based on
equations (1) to (4). Figure 4 similarly compares typical relaxation responses
with a prediction. Neither figure is intended as a demonstration of the pre-
dictive capability of the constitutive model but simply as an assessment of
correlation with existing data. The predictive capability of the constitutive
theory has been adequately demonstrated relative to other alloys in earlier
publications (refs. 2 and 6).

THE SHANLEY COLUMN

The column model adopted here is the sandwich idealization introduced by
Shanley (ref. 13) and used by Kachanov (ref. 16) and others. The column geome-
try is indicated in figure 5. All of the deformation is presumed to occur in
the slender bar elements 1 and 2 of length h and cross sectional area A/2.
The remainder of the column of length L (L>>h) remains rigid. The width of
the column, that is, the distance separating bars 1 and 2, is also taken as h.

The column is loaded by a time dependent load P(t) (shown positive); the

lateral displacement of the load point at any time is denoted by u(t). The
stress and total strain in bars 1 and 2 are denoted by 91 9y, and e, = 5]/h

and e, = 82/h, respectively.
Equilibrium requires that
0y + 0y = 200 (6)

and

N

where 9 = P/A.
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Differentiation with respect to time provides the rate form of the equi-
librium equations,

0, + 0p = 200 (8)
and

% "9 = h

u
oy + 4°0h (9

From geometric considerations (fig. 5) the compatibility condition is
obtained as

10)

or

an

in which ug 1is the initial displacement (imperfection). The rate form of the
compatibility relation is

Decomposing the total strain rates in each bar into elastic and inelastic
contributions gives
o
s -, P
ey = F + g (13)
(o)
s .2, P
&, =F + & (14)
where E is the Young's modulus as specified in equation (5). The inelastic

strain rates é? and ég are, of course, obtained by applying the inelastic
constitutive equations (1) to (4) to each bar.

Combining the equilibrium equations (8) and (9), the compatibility equa-
tion (12), and the constitutive relationships (13) and (14) leads to

—

: 4L . 4L 2u) 2L ‘P _ P
9 (l * TR °0> = 0y (l *Eh % " h ) - h % (e] - e2> 15
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Under constant compressive stress (i.e., 9 < 0 and 60 = 0), and in the

absence of inelasticity (é? = ég = 0), equation (15) gives the Euler critical

stress for the idealized column as

Eh

oc = aL (e
Further, calling
(¢}
p =22 an
o
and
n = %9 (18)

where n is termed the nondimensional displacement, we have from equation (15)

o4

.0 o E (p_-p
N =T+, O+p-n - T+ p 2 (e] - 92) a9
Now, from equation (6)
02 = 200 - C] (@40))

and from equations (12), (13), (14), and (18)

_E_°_1p°_2p
n = 2°c (E *eE] - F - & 21

The coupled system of equations (1), (2), (3, (19, 20>, and (21)
together with the appropriate initial conditions, including the initial imper-
fection n, = n{(0), allow the (nondimensional) displacement n(t) to be calcu-

lated for a specified temperature T, Euler critical stress Ocs and history of
loading oo(t). The results of several such calculations for various loading
histories are presented in the following section.

RESULTS

A1l of the calculated results are isothermal with the temperature taken
to be 811 K (1000 °F). The Euler critical stress o is 200 MPa and the load-
ing/unloading ramp rate I&OI is 96 MPa/sec. The governing system of equations
was integrated using a self-adapting Adams-Bashfcrth predictor-corrector method
with a fourth-order Runge-Kutta method as a starter. The calculations were
perforTed in double precision on a Prime 850 computer with an upper error bound
of 10-%.
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In all cases, the criterion defining the critical time to buckling t¢ is
taken as

2u _
n=ga (22)

o) = 0 (23)

that is, the stress in bar element 1 becoming zero.

Behavior Under Constant Load

In all calculations the compressive load is first applied from zero, where
the deforming elements are considered in a virgin state (i.e., @ = a, ® 0, to

a nominal value of the applied stress (oo = P/A) of -35 MPa. Thus, with the
Euler stress o = 200 MPa the nominal value of the ratio p (eq. (17)) is

[
0 _ =35 _
P o " 700 - -0.175 (24)

In this section we present the calculated results for a constant load o
held at the above value. Figure 6 shows a response n(t) under these condi-
tions for four different values of initial (nondimensional) displacement ng =

0.02, 0.05, 0.10, and 0.2. The time =t = t/tg in figure 6 is nondimensional,
being normalized with respect to the critical time corresponding to ng = 0.02;

that is, tg = 6 hr.

Figure 6 shows that the critical time to buckling is reduced by a factor
of almost 8 with an order of magnitude increase in the initial displacement.

For the sake of comparison, all subsequent calculations are taken to have
the initial imperfection ng = 0.02 and are presented in terms of the nondimen-

sional time =< = t/tp.

Behavior Under Variable Load

We first consider the effect of rapid load reductions and reversals super-
imposed on the constant load o, = -35 MPa (p = -0.175). As shown in the |

inserts of figure 7, load interruptions occur at time intervals of <, = 0.15

with varying amplitude. These include reductions (in the tensile direction)
of % to -20 MPa and to 0 MPa (insert (a)), to +20 MPa (insert (b)), and a
complete reversal to +35 MPa (insert (c¢)). The calculated effects of these
histories on the creep-buckling response n(t) are shown in the respective
curves (a), (b), and (c) of figure 7.
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Curve (a) corresponds to the loading histories indicated in insert (a);
reductions to -20 and O MPa. The response curve for each is identical to that
of figure 6 for the same initial displacement 0.02, thereby indicating that no
change in the buckling response has occurred. Response curve (b) corresponds
to insert (b) in which there is a load reversal to o, = +20 MPa. Here, we

begin to see a measurable change in the calculated creep-buckling response,
the critical time having diminished from the constant load case by about

10 percent. Finally, in curve (c) we observe a reduction of more than 30 per-
cent in the time to buckling. This corresponds to the history of insert (c)
where a complete load reversal from 9y = -35 MPa to oy = +35 MPa occurs at

each load interruption. Immediately following each reversal, we see evidence
of the reappearance of primary creep. This is attributed to the presence of
dynamic recovery (fig. 1) where creep (or relaxation) is observed to be accel-
erated with stress reversals — even in the absence of significant reversed
inelastic strain. Although, to the knowledge of the authors, these effects
have not been observed directly in creep-buckling phenomena, it is expected
that such effects can occur, on the basis of the experimental observations
illustrated schematically in fiqure 1.

The influence of dynamic recovery is best understood by considering the
state space (o,a) of figure 8. Note that in figure 8 and all subsequent repre-
sentations of the state space, compressive o and o« are shown as positive
and are plotted upward and to the right, respectively. Hereafter, the relevant
quadrants of the state space will be referred to as the first (oa > 0) and the
fourth (oa < 0). In figure 8 the trajectory of the state point (02, az) for

bar element 2 is shown corresponding to the constant load response curve (a)
in figure 6. The segment OA traces the path of the state point during initial
load-up to o9 = -35 MPa. Some inelasticity is indicated over path OA by the

increase in the inelastic state variable «,. As % is held constant, bar 2

creeps under nearly constant stress, and the state point moves toward B. As
the geometric nonlinearity becomes prevalent, the stress in bar 2 increases (as
that in bar 1 decreases), and the state point moves toward C. Point C corre-
sponds to the buckled condition n = 1 in figure 6 (curve (a)).

Similarly, figure 9 shows the trajectory of the state point for the load-
ing histories illustrated in insert (a) of figure 7; load reductions to o =

-20 MPa and to 9 = 0. Here, we see the effect of the abrupt load changes as

vertical (elastic) trajectories in the state space, resulting in no overall
change in the state path OABC from that just considered for a constant load.
This, of course, results in the same creep-buckling response observed earlier
for the constant load.

The state path of figure 10 relates to the loading history of insert (b)
in figure 7. Here, we begin to see evidence of state recovery. The load vari-
ations now produce stress reversals in bar 2 and the state point trajectories
are not simply vertical (elastic) lines as before, but now follow curved paths
as the state point penetrates into the fourth quandrant (oca < 0) corresponding
to a reversal of stress. The state recovers with the stress reversal, result-
ing in a relatively softer state (smaller az) upon reloading. Correspond-

ingly, the creep rate is increased in response to each load cycle. Evidence
of increased creep rate following reloading is apparent in curve (b) (fig. 7).
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Load histories involving larger stress reversals produce increased state
recovery. Figure 11 shows-the state path in bar 2 for the fully reversed load
depicted in insert (c) (fig. 7). In figure 11, the effect of dynamic recovery
at each unloading/reloading cycle returns the state point well back into the
primary creep regime. As observed earlier, clear evidence of the rejuvenation
of primary creep after each loading cycle is seen in curve (c), with the total
effect of diminishing the critical buckling time by about 30 percent.

Since the period of application of the rapid loading cycles (x, = 0.15)
was chosen quite arbitrarily, we now investigate the effect of the grequency
of load cycles. Figure 12 shows the buckling response curves n{t) for load
histories involving a full reversal; that is, o, = -35 to +35 MPa (as in
insert (¢) fig. 7), with periods T 10/2, 10/4, and 10/8. (The constant

load response curve is also shown for reference.) We see the pronounced effect
of more frequent (shorter period) stress reversals. Reversals with period

10/8 reduce the time to buckling by more than a factor of 3.

Next, we examine the influence of load reductions of extended duration on
the creep-buckling time. The loading histories considered are shown in the
inserts of figure 13. Case a (i.e., insert (a) and response curve (a)) is
equivalent to one of those considered previously (insert (a) of figure 7),
where the time duration at the reduced load 9 = 0 is effectively zero. This
history produces no change in the buckling response over the constant load
case.

Insert (b) depicts the history where the load, having been applied for
period 1?, is abruptly removed (at a rate Iool = 96 MPa/sec) and held at zero
od

for a per Ty A time comparable to the actual critical time (z, = 6 hr) of
the column under constant load. The sequence is then repeated. This history

reduces the critical time as shown in curve (b) by about 15 percent. Here, the
time < includes only that time in which the load 9 = -35 MPa is applied.

This behavior is best visualized in the state space (02, az), fiqure 14.
State recovery is observed as, in time, the state point moves at zero stress
toward smaller a; for example, on the first load reduction from point D to
E. Reloading returns the state point to a softer state than before the load
reduction and, correspondingly, to a higher creep rate. Repetition of the
sequence thus causes acceleration of the creep-buckling process.

Insert (c) of figure 13 shows a loading history in which the time at zero
stress is now increased a hundredfold to 10011. The corresponding response

curve (c) shows a further decrease in the critical time, about 30 percent.

The related state point trajectory shown in figure 15 is qualitatively similar
to that of figure 14 but now shows significantly increased recovery with the
hundredfold increase in hold time at the reduced stress.

Comparison With Predictions by Norton Law

In this section we compare the results presented with those for identical
loading histories based on a classical creep law of the Norton-Bailey type;
that is,
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P = BoMsgn(on (25)

A roughly equivalent representation was obtained by calculating the steady
state creep rates for various stress levels using equations (1) to (4) and fit-
ting equation (25) to these "data" by choosing optimal values of B and N in a
least squares sense. This process yielded the following:

B = 2.03x10-19

N =9.375

which are consistent with units of o in MPa and &P in hr-1. By using
equation (25), the critical time to buckling (corresponding to the constant
load case of curve (a) figure 6) turned out to be té = 7.8 hr; slightly
greater than the earlier reference té = 6 hr. Thus; in the calculated results

presented here (fig. 16), the nondimensional time =t 1is obtained by normaliza-
tion with respect to té. The time plotted is that for which the load

9 = -35 MPa is applied. On this basis, calculations of creep-buckling
response n{(t) for all of the loading histories presented earlier have been
included in figure 16. As expected, the time to buckling is completely unaf-
fected by any of the variable loading histories. This is because the classi-
cal Norton-Bailey representation (eq. (25)) fails to account for state recovery
in any form.

DISCUSSION

Dynamic recovery, as illustrated in figure 1 and by the state point tra-
jectories of figures 10 and 11, is characterized in the present constitutive
model through the dual analytical forms of the evolutionary law (eqgs. 2)).
This description is consistent with the viewpoint of Onat (ref. 17) in repre-
senting inelastic behavior through the specification of analytically different
mathematical forms corresponding to various regions of the state space. Here,
different analytical forms are specified depending on whether the state point
lies in the first (third) quadrant oa > O or the fourth (second) quadrant
oa < 0 of the state space. In effect, this permits the state point to recover
rapidly upon reversing the stress, even in the absence of significant reversed
inelastic strain (fig. 1). This formulation is intended as an idealization of
a physical process wherein the dislocation structure (or the associated struc-
ture of internal stress) is abruptly altered with a reversal of the applied
stress, because previously immobiltized dislocations are remobilized on their
slip planes (ref. 18). Since the inelastic state variable « is taken as an
averaged, phenomenological measure of the dislocation microstructure (or its
associated internal stress state), it too should reflect a rapid change as the
stress is reversed.

The specific functional form of the first of equations (2) is formulated
in accordance with the experimental results of Mitra and MclLean (ref. 19).
The second of equations (2) can be considered an analytical continuation of
the first equation, evaluated at a, (small «) in the first quadrant of the

state space, into the second quadrant; or with symmetrical response in tension
and compression, at -ay in the third quadrant into the fourth quadrant.
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This amounts to a highly idealized representation of the underlying physical
process, but captures, nevertheless, the essential feature - that abrupt micro-
structural rearrangements occur with stress reversals.

The path of the state point in the fourth quadrant oa < 0 in figures 1]
and 12, and, thus the extent of recovery, depend on the total strain rate and,
critically, on the parameter - Ideally, @y, Or, more comprehensively, a

function of o and o« replacing it, should be determined from experiments in
which the recovery of creep rate or flow stress under stress reversals is
measured directly; and not inferred indirectly from available monotonic ten-
sile, creep and/or relaxation data as was done here. The present representa-
tion, however, is believed to be adequate, and consistent with the objective
of demonstrating the strong influence of state recovery in creep buckling. A
more comprehensive description of dynamic recovery, in the same spirit as that
described, and the relevant experimentation are topics of continuing research.

Thermal recovery, as depicted in figure 2 and in the state paths shown in
figures 14 and 15, is manifest in the second (negative) term of the Bailey-
Orowan evolutionary equations (2). In the applications considered, the state
point recovers, in time, under constant (zero) reduced stress, giving rise to
an increased creep rate on reapplication of stress (fig. 2). Physically, this
macroscopic behavior is associated with thermally activated, diffusion con-
trolled, microscopic processes such as climb of edge dislocations; which allow
dislocations, in time, to bypass immobilizing obstacles, thus producing a
softer state (smailer o). The important material parameters in equations (2)
are R, m, and . Ideally, these parameters are determined from both creep
data and information obtained from stress or strain transient dip tests
(ref. 6) that provide a direct measurement of thermal recovery. Again, as
these data were not readily available for the alloy Narloy-Z, the pertinent
parameters were inferred indirectly from available data. This approach
although not optimal, is considered consistent with the present objectives.

CONCLUSIONS

We have examined the creep-buckling response of an idealized (Shanley)
column under some special variable loadings. The two types of loading consid-
ered amount to superpositions of the following load sequences on a constant
applied load: (1) rapid cyclic unloading/reloading sequences involving stress
reversals, and (2) cyclic loading that includes intermittent reductions of load
for extended periods of time (at elevated temperature).

Although the sandwich column model used is highly idealized, the constitu-
tive model is quite comprehensive in that it incorporates a representation of
dynamic and thermal (state) recovery. There is substantial experimental evi-
dence that many structural alloys embody internal mechanisms at elevated tem-
perature that allow inelastic strain rates to increase (recover) following
periods of hardening. In particular, this is believed to be true for the
representative copper alloy Narloy-Z characterized here.

The loading sequences examined are not intended to represent prototypical
loading histories for any particular structural component; instead, they were
chosen to best illustrate the generic influence of both dynamic and thermal
recovery on structural behavior in the presence of a creep induced instability.
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We expect that qualitatively similar behavior will accompany more realistic
variable loading conditions (and more realistic structures), and that neglect
of state recovery effects in such cases will lead, similarly, to nonconserva-
tive predictions of the critical time to creep buckling.

The following conclusions can be drawn from this study:

1. State recovery (dynamic and thermal) can have a significant effect on
creep-buckling behavior, that is, on the critical time.

2. Failure to account for state recovery in the constitutive equations
can lead to nonconservative predictions of the critical buckling time under
variable loading.

3. A classical Norton-Bailey type creep law, commonly used in creep-
buckling analyses, does not account for state recovery and, therefore, may sig-
nificantly over predict the time to creep buckling under variable loading.

4, It is important that constitutive models (which are to be used in
creep-buckling analyses involving variable loading) allow for recovery effects,
and furthermore, that the characterization tests used for determining the per-
tinent material parameters include direct measurements of state recovery.
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Figure 1. - Schematic representation of dynamic recovery. In the absence of
stress reversals, the stress relaxations over a fixed time ab, cd, and ef
show successive hardening. After the stress reversal fgh, stress relaxation

hj shows evidence of (creep) softening, that is, evidence of recovery of
state (ref. 1).
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Figure 2. - Schematic representation of thermal recovery. Response in an

interrupted creep test typically exhibits relatively small strain recovery
e but measurable softening (depending on the interval A<) following a

stress reduction, that is, recovery of state (ref. 2).
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Figure 3. - Comparison of (a) tensile data (ref. 14) and (b) predictions for
Narloy-Z at various temperatures.

Strain rate is 0.002/sec.
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Figure 4. - Comparison of stress relaxation data (ref. 15) and a prediction
for Narloy-Z at 811 K (1000 °F). Crosshatched region indicates range of

three tests.

Starting stress is 120 MPa.
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Figure 5. - Geometry of the Shanley sandwich column.
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Figure 6. - Nondimensional displacement versus time for initial imperfections
of ng = 0.02 (a), 0.05 (b), 0.1 (¢), and 0.2 (d).
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Figure 7. - Nondimensional displacement versus time for loading histories
depicted in inserts (a), (b), and (c).
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Figure 8. - State space for bar 2 showing state path for constant load
(curve (a), fig. 6). Units MPa.
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Figure 9. - State space for bar 2 showing state paths corresponding to loading
histories of insert (a), figure 7. Units MPa.
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Figure 10. - State space for bar 2 showing state path corresponding to loading
history of insert (b), figure 7. Units MPa.
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Figure 11. - State space for bar 2 showing path corresponding to loading
history of insert (c¢), figure 7. Units MPa.
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Figure 13. - Nondimensional displacement versus time for loading histories
depicted in inserts (a), (b), and (¢).
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Figure 14. - State space for bar 2 showing state path corresponding to
insert (b), figure 13. Units MPa.
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Figure 15. - State space for bar 2 showing state path corresponding to
insert (c), figure 13. Units MPa.
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Figure 16. - Nondimensional displacement versus time for all loading histories
using classical Norton type creep law.
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